
Linux Core Dumps

Kevin Grigorenko
kevgrig@gmail.com

mailto:kevgrig@gmail.com

Many Interactions with Core Dumps

Process
Crashes

systemd-coredump

abrtd

Ack! 4GB File!

Most Interactions with Core Dumps

Process
Crashes

Poof!

systemd-coredump
abrtd
core

Nobody
Looks

Kernel
Crashes

kdump not
configured Poof!

So what?

● Crashes are problems!
– May be symptoms of security vulnerabilities

– May be application bugs
● Data corruption
● Memory leaks

– A hard crash kills outstanding work

– Without automatic process restarts, crashes lead to service
unavailability

● With restarts, a hacker may continue trying.

● We shouldn't be scared of core dumps.
– When a dog poops inside the house, we don't just `rm -f $poo`

or let it pile up, we try to figure out why or how to avoid it again.

What is a core dump?

● It's just a file that contains virtual memory
contents, register values, and other meta-data.
– User land core dump: Represents state of a

particular process (e.g. from crash)

– Kernel core dump: Represents state of the kernel
(e.g. from panic) and process data

● ELF-formatted file (like a program)

Kernel

User Land
Process 1

User Land
Process N Crash core

vmcorePanic

What is Virtual Memory?

● Virtual Memory is an abstraction over physical
memory (RAM/swap)
– Simplifies programming

– User land: process isolation

– Kernel/processor translate virtual address
references to physical memory locations

8
GB

0

16
EB

0

64-bit Process Virtual
Address Space (16EB)

8GB RAM
(Example)

How much virtual memory is used?

● Use `ps` or similar tools to query user process
virtual memory usage (in KB):
– $ ps -o pid,vsz,rss -p 14062

 PID VSZ RSS
14062 44648 42508

8
GB

0

16
EB

0

Process 1 Virtual
Memory Usage (VSZ)

8GB RAM
(Example)

Resident Page 1

Resident Page 2

Process 2

How much virtual memory is used?

● Virtual memory is broken up into virtual memory areas (VMAs),
the sum of which equal VSZ and may be printed with:
– $ cat /proc/${PID}/smaps

00400000-0040b000 r-xp 00000000 fd:02 22151273 /bin/cat
Size: 44 kB
Rss: 20 kB
Pss: 12 kB...

● The first column is the address range of the VMA.
● The second column is the set of permissions (read, write, execute, private copy

on write).
● The final column is the pathname if the VMA is a file mapping. If it's [heap],

that's the data segment (primary malloc arena).
● The Rss value shows how much of the VMA is resident in RAM.
● The Pss value divides Rss by the total number of processes sharing this VMA.

glibc

How to request virtual memory?
● malloc: request process virtual address space

– May suffer fragmentation
● mmap (syscall): size rounded up to page size and zero'd

kernel
sbrk

data segment
...

arenas
...

mmap

Program

mmap

size <
threshold

malloc

yes

no (mmap)

Free
Lists

Free
Lists

Linux 32-bit Virtual Memory Layout

● 3GB user
space
(2^^32), or
4GB if:
– 32-bit

process on
64-bit kernel

– 32-bit
hugemem
kernel

32-bit Process

0

3GB

Reserved
for Kernel

32-bit Kernel

4GB
32-bit Process

0

64-bit or hugemem Kernel

4GB

Mmap,
shared

libraries,
additional

thread stacks

Data Segment
Program

Mmap,
shared

libraries,
additional

thread stacks

Data Segment
Program

Mmap,
shared

libraries,
additional

thread stacks

Data Segment
Program

Linux 64-bit Virtual Memory Layout

● The x86_64 processor memory
management unit supports up to
48-bit virtual addresses (256TB).
– https://www.kernel.org/doc/ols/2001/x8

6-64.pdf
● 128TB for the program

– 0x through 0x00007FFF'FFFFFFFF

● 128TB for the kernel
– 0xFFFF8000'00000000 through

0xFFFFFFFF'FFFFFFFF

– $ sudo ls -lh /proc/kcore
-r-------- 1 root root 128T /proc/kcore 0

128
TB

Reserved
for Kernel

16EB

Mmap,
shared

libraries,
additional

thread stacks

Data Segment
Program

16EB-
128TB

https://www.kernel.org/doc/ols/2001/x86-64.pdf
https://www.kernel.org/doc/ols/2001/x86-64.pdf

Diving in!

● Before going through the
boring details of how to
produce coredumps, let's
assume we have one.

● Since it's an ELF-formatted
file, let's see the details:

● $ readelf -h core.14391.dmp
 Class: ELF64
 Type: CORE (Core file)...

● This confirms we've got a
coredump from a 64-bit
process.

ELF File

Metadata (NOTE)

Virtual Memory Area (LOAD)

Virtual Memory Area (LOAD)

Virtual Memory Area (LOAD)

...

User Coredumps

● Next, we'll need to know which program
crashed. This may be in logs, but let's just read
the notes:

● $ readelf -n core.14391.dmp
 CORE 0x000001de NT_FILE (mapped files)
 Start End Page Offset
 0x400000 0x401000 0x00000000 /work/toorcon/a.out …

● In this case, the program is /work/toorcon/a.out

Debugging User Coredumps

● Now that we know the program that produced the
coredump, simply load `gdb` with the program and
the coredump. For example:
– $ gdb /work/toorcon/a.out core.14391.dmp

Program terminated with signal SIGSEGV,
Segmentation fault.
#0 0x00007f6526f1ec8a in strlen () from /lib64/libc.so.6
Missing separate debuginfos, use: debuginfo-install
glibc-2.20-8.fc21.x86_64

● The (gdb) prompt awaits instructions. Type `help`
for a list of commands. Type `quit` to exit.

Debugging User Coredumps

● If you're not a developer of the
program, you'll just need to
send them the coredump,
libraries, and a stacktrace

● (gdb) bt
– #0 0x00007f6526f1ec8a in strlen

() from /lib64/libc.so.6
#1 0x00007f6526f03d3c in puts
() from /lib64/libc.so.6
#2 0x0000000000400563 in
main (argc=1,
argv=0x7ffebc36a128) at test.c:6

● Even better: all stacks
– (gdb) thread apply all bt

Symbols

● Symbols map virtual
addresses to human-
understandable names
(functions, structures, etc.)

● Without symbols, you'll just
get a bunch of addresses

● -g doesn't affect
optimizations. “We
recommend that you
always use ‘-g’ whenever
you compile a program."
https://www.sourceware.org
/gdb/current/onlinedocs/gd
b.html

Source code
void foo(int bar)

Compiler
(e.g. gcc)

compile

Binary
0x1234

Default
(stripped)

Binary
0x1234

Symbol
0x1234 = foo

-g

Binary
0x1234

Symbol
0x1234 = foo

Separate
.debug or

build-id File

https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html

Debugging User Coredumps

● It's best to load the coredump on the same machine
where it was produced since gdb will find the loaded
shared libraries and any installed debuginfo symbols.

● If copying the coredump for processing on another
machine, also copy the program, all shared libraries in
the NOTE section and expand those files into a similar
folder structure and point to that:
– $ gdb # no parameters

(gdb) set solib-absolute-prefix ./
(gdb) set solib-search-path .
(gdb) set debug-file-directory ./path_to_debug
(gdb) file ./path_to_program
(gdb) core-file ./path_to_coredump

GDB: Querying virtual memory

● gdb can query a core file and produce output
about the virtual address space which is similar
to /proc/${PID}/smaps, although it is normally a
subset of all of the VMAs:
– (gdb) info files

Local core dump file:
 `core.16721.dmp', file type elf64-x86-64.
 0x0000000000400000 - 0x0000000000401000 is load1
 0x0000000000600000 - 0x0000000000601000 is load2
 0x0000000000601000 - 0x0000000000602000 is load3
 0x00007fe288ca5000 - 0x00007fe288ca6000 is load4a
 0x00007fe288ca6000 - 0x00007fe288ca6000 is load4b
 0x00007fe288e58000 - 0x00007fe288e58000 is load5...

GDB Details

● Switch to a frame (list threads with `info thread` and switch threads
with `thread N`):
– (gdb) frame 2

#2 0x0000000000400563 in main (argc=3, argv=0x7ffd47508d18) at test.c:6
6 printf("%s\n", p);

● Check why the printf crashed:
– (gdb) print p

$10 = 0x0

● Understand the type of argv and then print string contents:
– (gdb) ptype argv

type = char **
(gdb) print argv[0]
$7 = 0x7ffd4750a17c "./a.out"
(gdb) print argv[1]
$8 = 0x7ffd4750a184 "arg1"

User coredump ulimits

● Ensure process ulimits for coredumps (-c) and files (-f) are unlimited
– The coredump ulimit (-c) often defaults to 0, suppressing cores

– A coredump is a file so the file ulimit (-f) also applies

● Ulimits may be soft or hard
– Hard: the maximum value a non-root user can set

– Soft: Sets the current limit (must be <= hard for non-root)

● Ulimits for the current shell may be queried:
– $ ulimit -c -f

core file size (blocks, -c) 0
file size (blocks, -f) unlimited

● Or by process:
– $ cat /proc/${PID}/limits | grep -e Limit -e core -e "Max file size"

Limit Soft Limit Hard Limit Units
Max file size unlimited unlimited bytes
Max core file size 0 unlimited bytes

User Coredump Ulimits

● Ulimits may be set in limits.conf on a user or group
basis.

● Commonly set in /etc/security/limits.conf or
/etc/security/limits.d/99-cores.conf

● The following example sets file and core soft and hard
ulimits to unlimited for all users
● * - core unlimited

* - file unlimited

● Alternatively, run the command `ulimit -c unlimited -f
unlimited` in the shell that launches the program

● systemd-started processes use LimitCORE/LimitFSIZE

What produces a user coredump?

● When the kernel handles certain signals (`man 7 signal`):
– SIGQUIT (kill -3)

– SIGILL (kill -4)

– SIGABRT (kill -6)

– SIGGFPE (kill -8)

– SIGSEGV (kill -11)
● This is one of the most common causes of a crash when a program references

invalid memory (e.g. NULL)

– Others: SIGBUS, SIGSYS, SIGTRAP, SIGXCPU, SIGXFSZ,
SIGUNUSED

● Outside the kernel: use `gcore $PID` (part of gdb)
– Different code than the kernel: attaches gdb and dumps memory

– Non-destructive (i.e. process continues after detach)

Where is the user coredump?

● The coredump goes to core_pattern (see `man 5 core`):
– $ sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-coredump
%p %u %g %s %t %e

● The default is `core` (sometimes with %p) which writes
a file named `core` to the current directory of the PID
– May include a path to use a dedicated coredump directory

● If the value starts with a `|`, then the coredump bytes
are piped to that program

● Often specified in /etc/sysctl.conf or
{/etc/sysctl.d|/usr/lib/sysctl.d|/run/sysctl.d}/*.conf

What's in a user coredump?

● The memory dumped is controlled with a bit mask
in /proc/$PID/coredump_filter (see `man 5 core`)
– Inherited from parent process, so you may set in the

script/shell that starts the process. Example:
● $ echo 0x7F > /proc/self/coredump_filter

● Never dumped:
– Anything madvise'd with MADV_DONTDUMP

– Memory the process can't read (see the `r` permission
in `cat /proc/$PID/smaps`)

– Memory-mapped I/O pages such as frame buffers

systemd-coredump

● systemd-coredump is a common user coredump
handler which handles coredumps

● Configured in /etc/systemd/coredump.conf
● Defaults:

– Store coredumps in /var/lib/systemd/coredump/

– Use no more than 10% of that disk's space

– Ensures cores don't cause that disk's free space to
go below 15%

● systemd-tmpfiles may remove old cores

abrtd

● abrtd is an older user coredump handler
● Like systemd-coredump, modified core_pattern

to something like:
– |/usr/libexec/abrt-hook-ccpp % s % c % p % u % g

% t e

● Configured in /etc/abrt/abrt.conf
● Defaults:

– DumpLocation=/var/spool/abrt/

– MaxCrashReportsSize=1000M

Read Memory in GDB

● Virtual memory may be printed with the `x` command:
– (gdb) x/32xc 0x00007f3498000000

0x7f3498000000: 32 ' ' 0 '\000' 0 '\000' 28 '\034' 54 '6' 127 '\177' 0 '\000' 0 '\000'
0x7f3498000008: 0 '\000' 0 '\000' 0 '\000' -92 '\244' 52 '4' 127 '\177' 0 '\000' 0 '\000'...

● Another option is to dump memory to a file and then spawn an xxd process from within
gdb to dump that file which is easier to read (install package vim-common):
– (gdb) define xxd

>dump binary memory dump.bin $arg0 $arg0+$arg1
>shell xxd dump.bin
>shell rm -f dump.bin
>end
(gdb) xxd 0x00007f3498000000 32
0000000: 2000 001c 367f 0000 0000 00a4 347f 0000 ...6.......4...
0000010: 0000 0004 0000 0000 0000 0004 0000 0000

● For large chunks, these may be dumped to a file directly:
– (gdb) dump binary memory dump.bin 0x00007f3498000000 0x00007f34a0000000

● Large VMAs often have a lot of zero'd memory. A simple trick to filter those out is to
remove all zero lines:
– $ xxd dump.bin | grep -v "0000 0000 0000 0000 0000 0000 0000 0000" > dump.bin.txt

Eye catchers

● Well written programs put eye catchers at the start of
structures to make finding problems easiers
– (gdb) xxd 0xF2E010 128

00000000: 4445 4144 4641 4444 0000 0000 0000 0000 DEADFADD........
00000010: 0000 0000 0000 0000 2100 0000 0000 0000 !.......
00000020: 4445 4144 4641 4444 0000 0000 7b00 0000 DEADFADD....{...
00000030: 0000 0000 0000 0000 2100 0000 0000 0000 !.......
00000040: 4445 4144 4641 4444 0000 0000 f600 0000 DEADFADD........
00000050: 0000 0000 0000 0000 2100 0000 0000 0000 !.......
00000060: 4445 4144 4641 4444 0000 0000 7101 0000 DEADFADD....q...
00000070: 0000 0000 0000 0000 2100 0000 0000 0000 !.......

Debugging glibc malloc

● (gdb) p mp_
– $5 = {trim_threshold = 4202496, top_pad = 131072, mmap_threshold = 2101248, arena_test = 0,

arena_max = 1, n_mmaps = 14, n_mmaps_max = 65536, max_n_mmaps = 16, no_dyn_threshold = 0,
pagesize = 4096, mmapped_mem = 18333696, max_mmapped_mem = 22536192, max_total_mem =
0, sbrk_base = 0xd83000 ""}

● (gdb) p main_arena
– $4 = {mutex = 0, flags = 3, fastbinsY = {...}, top = 0x7f650e165000, last_remainder = 0x7f65952d4740,

bins = {...}, binmap = {...}, next = 0x368e58ee80, next_free = 0x368e58ee80, system_mem =
3022028800, max_system_mem = 3022028800}

● (gdb) p &main_arena
– $2 = (struct malloc_state *) 0x368e58ee80

● (gdb) p main_arena.next
– $3 = (struct malloc_state *) 0x368e58ff80

● (gdb) p *((struct malloc_state *) 0x368e58ff80)
– $4 = (struct malloc_state *) 0x368e58ee80

● (gdb) p *(mchunkptr) 0x10c5c90
– $5 = {prev_size = 0, size = 145, fd = 0x10c4030, bk = 0x312258fed8, fd_nextsize = 0x7fd3f0d5b000,

bk_nextsize = 0x7fd3f0d5b4e8}

Configure Kernel Coredumps

● Install `kexec-tools`
● Add `crashkernel=256M` to the kernel cmdline – This amount of RAM

is no longer available to your live kernel
– grub2 example:

● Edit /etc/default/grub
– Add `crashkernel=256M` to GRUB_CMDLINE_LINUX

● # grub2-mkconfig -o /boot/grub2/grub.cfg
● Reboot and verify with `cat /proc/cmdline`

● To customize kdump, edit /etc/kdump.conf
– For example, often useful to get user process data:

● core_collector makedumpfile -l --message-level 1 -d 23,31

● Enable and start the kdump service
– # systemctl enable kdump.service

– # systemctl start kdump.service

How to Create a Kernel Coredump?

● Once the kdump service is running, a kernel
panic will automatically produce a kernel
coredump

● To manually produce a kernel coredump:
– Enable sysrq (`man 5 proc`):

● # echo 1 > /proc/sys/kernel/sysrq

– Emulate a crash:
● # echo c > /proc/sysrq-trigger

● kdump will dump the vmcore and reboot

Reading a Kernel Coredump

● Switch to the root user
● Kernel coredumps normally in /var/crash/

– Check the version of the core:

– # cd /var/carsh/${VMCORE_DIRECTORY}/

– # strings vmcore | grep "Linux version"
● Linux version 4.2.3-200.local.fc22.x86_64

● Install the kernel debuginfo/dbgsym packages
matching the version of the vmcore

Reading a Kernel Coredump

● You may install the `crash` package, but best to
compile from source:
– https://github.com/crash-utility/crash/releases

– $ tar xzf crash* && cd crash*

– Recent vmcores may be compressed with lzop so best
to compile in that support:

● Install lzo, lzo-devel and lzo-minilzo packages
● echo '-DLZO' > CFLAGS.extra
● echo '-llzo2' > LDFLAGS.extra

– $ make

– # make install

https://github.com/crash-utility/crash/releases

Reading a Kernel Coredump

● Run crash on the matching vmlinux file and vmcore
– crash ${PATH_TO_VMLINUX} ${PATH_TO_VMCORE}

– Example:
● $ crash /usr/lib/debug/lib/modules/4.2.3-

200.local.fc22.x86_64/vmlinux /var/crash/*/vmcore
 CPUS: 4
 LOAD AVERAGE: 1.45, 0.72, 0.27
 TASKS: 444
 RELEASE: 4.2.3-200.local.fc22.x86_64
 PANIC: "sysrq: SysRq : Trigger a crash"
 PID: 12868
 COMMAND: "bash"
 CPU: 3

● Last few lines are the current context

Crash Commands

● Type `help` for command list. `alias` to list aliases. `quit` to exit.
● Print the kernel log

– crash> dmesg
[90.266362] sysrq: SysRq : Trigger a crash

● Print processes
– crash> ps

 PID PPID CPU TASK ST %MEM VSZ RSS COMM
> 0 0 0 ffffffff81c124c0 RU 0.0 0 0 [swapper/0]

● Change current context to another PID:
– crash> set 10042

 PID: 10042
COMMAND: "gnome-terminal-"
 TASK: ffff8800482c3b00 [THREAD_INFO: ffff880044d24000]
 CPU: 3
 STATE: TASK_RUNNING

● Change context to the task executing on CPU #N (0-based), or the panic'ed task:
– crash> set -c 0

– crash> set -p

● Print the stack trace of the current
context:
– crash> bt -l

PID: 12868 TASK: ffff88007a0a0000 CPU:
3 COMMAND: "bash"
 #0 [ffff88004832f9f0] machine_kexec at
ffffffff8105802b
 /usr/src/debug/kernel-4.2.fc22/linux-4.2.3-
200.local.fc22.x86_64/arch/x86/kernel/mach
ine_kexec_64.c: 322
 #1 [ffff88004832fa60] crash_kexec at
ffffffff81127f42
 /usr/src/debug/kernel-4.2.fc22/linux-4.2.3-
200.local.fc22.x86_64/kernel/kexec.c: 1500
 #2 [ffff88004832fb30] oops_end at
ffffffff810180e6
 /usr/src/debug/kernel-4.2.fc22/linux-4.2.3-
200.local.fc22.x86_64/arch/x86/kernel/dump
stack.c: 232 ...

Crash Commands

Crash Commands

● Print virtual memory areas of the current context
– crash> vm

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"
 MM PGD RSS TOTAL_VM
ffff880044d5d800 ffff88007b15b000 4816k 118400k
 VMA START END FLAGS FILE
ffff880060b3eda8 55c1a01eb000 55c1a02e3000 8000875
/usr/bin/bash

● Print open files of the current context:
– crash> files

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"
ROOT: / CWD: /root
 FD FILE DENTRY INODE TYPE PATH
 0 ffff88005518ba00 ffff88005170a000 ffff88007c6a1f10 CHR /dev/pts/0

Crash Commands

● Print general memory information:
– crash> kmem -i

 PAGES TOTAL PERCENTAGE
 TOTAL MEM 479480 1.8 GB ----
 FREE 218470 853.4 MB 45% of TOTAL MEM
 USED 261010 1019.6 MB 54% of TOTAL MEM
 BUFFERS 8096 31.6 MB 1% of TOTAL MEM
 CACHED 93047 363.5 MB 19% of TOTAL MEM
 TOTAL SWAP 64511 252 MB ----
 SWAP USED 0 0 0% of TOTAL SWAP
 SWAP FREE 64511 252 MB 100% of TOTAL SWAP
 COMMIT LIMIT 304251 1.2 GB ----
 COMMITTED 828252 3.2 GB 272% of TOTAL LIMIT

● Print kernel memory slab information:
– crash> kmem -s

CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZE
ffff88007d3c5e00 TCP 1984 30 32 2 32k

Crash Commands

● Print each CPU's run queue:
– crash> runq

CPU 0 RUNQUEUE: ffff88007fd967c0
 CURRENT: PID: 12868 TASK: ffff88007a0a0000 COMMAND: "bash"
 RT PRIO_ARRAY: ffff88007fd96960
 [no tasks queued]
 CFS RB_ROOT: ffff88007fd96860
 [120] PID: 224 TASK: ffff880036939d80 COMMAND: "kworker/3:2"
 [120] PID: 10042 TASK: ffff8800482c3b00 COMMAND: "gnome-terminal-"

● Print swap information:
– crash> swap

SWAP_INFO_STRUCT TYPE SIZE USED PCT PRI FILENAME
ffff880036629400 PARTITION 258044k 0k 0% -1 /dev/dm-0

● Display X bytes from a start address (in this example, 32 bytes):
– crash> rd -8 0xffffffff814821f6 32

ffffffff814821f6: c6 04 25 00 00 00 00 01 5d c3 0f 1f 44 00 00 55 ..%.....]...D..U
ffffffff81482206: 48 89 e5 53 8d 5f d0 48 c7 c7 60 48 a9 81 48 83 H..S._.H..`H..H.

Crash Commands

● Print stack contents for each frame:
– crash> bt -f

#11 [ffff880079d03de0] write_sysrq_trigger at ffffffff81482e98...
#12 [ffff880079d03e00] proc_reg_write at ffffffff81286f62
 ffff880079d03e08: ffff8800420e3800 ffff880079d03f18
 ffff880079d03e18: ffff880079d03ea8 ffffffff8121d8d7

● Print definition of something like a stack frame method:
– crash> whatis write_sysrq_trigger

ssize_t write_sysrq_trigger(struct file *, const char *, size_t, loff_t *);

● In this case, the four arguments to write_sysrq_trigger will be the four addresses at
the top of the stack of the lower frame (respectively, ffff8800420e3800,
ffff880079d03f18, etc.)

● Since we know the first argument is a file, let's print its dentry struct and then from
that its name:
– crash> struct file.f_path.dentry ffff8800420e3800

 f_path.dentry = 0xffff880060a2d0c0
crash> struct dentry.d_name.name 0xffff880060a2d0c0
 d_name.name = 0xffff880060a2d0f8 "sysrq-trigger"

Live Kernel Debugging

● If proper symbols are installed, simply run the
`crash` command without arguments to debug
the live kernel

● # crash

OOM Killer

● “By default [/proc/sys/vm/overcommit_memory=0], Linux
follows an optimistic memory allocation strategy. This
means that when malloc() returns non-NULL there is no
guarantee that the memory really is available. In case it
turns out that the system is out of memory, one or more
processes will be killed by the OOM killer” (`man 3 malloc`).

● Watch your system logs for messages such as:
– kernel: Out of Memory: Killed process 123 (someprocess).

● Or set /proc/sys/vm/panic_on_oom=1 to cause a kernel
panic instead
– Then use the `bt` command to see who requested memory and

how much and the `ps` command to see what is using memory

swappiness

● Linux aggressively uses physical memory for
transient data such as file cache.
– $ free -m

 total used free shared buffers cached
Mem: 15699 4573 11126 0 86 1963
-/+ buffers/cache: 2523 13176

● However, /proc/sys/vm/swappiness (default 60)
controls how much the kernel will prefer to page
programs out rather than filecache

● Set lower (e.g. 0) to avoid paging out programs

Memory Leaks

● "Currently debugging native-memory leaks on Linux with the
freely available tools is more challenging than doing the same
on Windows. Whereas UMDH allows native leaks on
Windows to be debugged in situ, on Linux you will probably
need to do some traditional debugging rather than rely on a
tool to solve the problem for you."
http://www.ibm.com/developerworks/library/j-nativememory-lin
ux/

● ltrace might help, but no stacks:
– $ ltrace -f -tt -p ${PID} -e malloc,free -o ltrace.out

● valgrind might work in a test environment, but not production
● mtrace overhead too high. SystemTap good option
● Find largest Rss VMAs in smaps and dump them in gdb

http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/

Summary

● Set `core` (-c) and `file` (-f) ulimits to unlimited for users or
groups that run programs you're concerned about.
– Either run `ulimit -c unlimited -f unlimited` in the shell or script that

starts the process, or set it globally in /etc/security/limits.conf or
/etc/security/limits.d/

– Confirm the ulimits are set correctly by running `cat /proc/$PID/limits`

● If using systemd-coredump, ensure enough disk space is
available or modify the configuration

● If using abrtd, increase MaxCrashReportsSize or set to
unlimited

● Install debuginfo/dbgsym packages for kernel* packages and
all the programs you're concerned about

Summary

● Monitor for coredumps
● Enable kdump and monitor for vmcores
● Don't be afraid to load cores and vmcores and

review the stack traces
● Otherwise, report the issues to the owner(s) of the

code

Questions?

Appendix

Tips

● Review the size of thread stacks when investigating
memory usage

● If using gcore, also gather /proc/$PID/smaps beforehand
● Creating coredumps is mostly disk I/O time, so if

performance is important, allocate additional RAM so
that coredumps are written to filecache and written out
asynchronously

● If no memory leak, but RSS increases, may be
fragmentation. Consider
MALLOC_MMAP_THRESHOLD_/MALLOC_MMAP_MA
X_ and/or MALLOC_ARENA_MAX=1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

